Abstract Submitted for the DAMOP12 Meeting of The American Physical Society

All-Optical Production of a Lithium Quantum Gas Using Narrow-Line Laser Cooling¹ TSUNG-LIN YANG, PEDRO M. DUARTE, RUSSELL A. HART, RANDALL G. HULET, Rice University — We have used the narrow $2S_{1/2} \rightarrow 3P_{3/2}$ transition in the ultraviolet (UV) to laser cool and magneto-optically trap (MOT) ⁶Li atoms.² Laser cooling of lithium is usually performed on the $2S_{1/2} \rightarrow 3P_{3/2}$ (D2) transition, and temperatures of ~300 μ K are typically achieved. The linewidth of the UV transition is seven times narrower than the D2 line, resulting in lower laser cooling temperatures. We demonstrate that a MOT operating on the UV transition reaches temperatures as low as 59 μ K. Furthermore, we find that the light shift of the UV transition in an optical dipole trap at 1070 nm is small and blue-shifted³, facilitating efficient loading from the UV MOT. After loading from the UV MOT, 6×10^6 atoms with peak density $n_0 = 2.7 \times 10^{13} \, cm^{-3}$ remain at $T = 60 \, \mu K$, which corresponds to $T/T_F \approx 2.7$. Evaporative cooling of a two spin-state mixture of ⁶Li in the optical trap produces a quantum degenerate Fermi gas with 3×10^6 atoms in only 5 s.

¹Supported by NSF, ONR, DARPA, and the Welch Foundation.
²P. M. Duarte et al., Phys. Rev. A 84, 061406 (2011).
³M. Safronova, Personal Communication.

Tsung-Lin Yang Rice University

Date submitted: 30 Jan 2012

Electronic form version 1.4