Abstract Submitted for the DAMOP12 Meeting of The American Physical Society

Low-temperature, high-density magneto-optical trapping of potassium using the open $4S \rightarrow 5P$ transition at 405 nm DAVID MCKAY, DYLAN JERVIS, DAN FINE, University of Toronto, JOHN SIMPSON-PORCO, University of California Santa Barbara, GRAHAM EDGE, JOSEPH THYWISSEN, University of Toronto — We report [1] the laser cooling and trapping of neutral potassium on an open transition. Fermionic 40 K is captured using a magneto-optical trap (MOT) on the closed $4\mathrm{S}_{1/2} \to 4\mathrm{P}_{3/2}$ transition at 767 nm and then transferred, with unit efficiency, to a MOT on the open $4S_{1/2} \rightarrow 5P_{3/2}$ transition at 405 nm. Because the $5P_{3/2}$ state has a smaller line width than the $4P_{3/2}$ state, the Doppler limit is reduced. We observe temperatures as low as $63(6) \mu K$, the coldest potassium MOT reported to date. The density of trapped atoms also increases, due to reduced temperature and reduced expulsive light forces. We measure a two-body loss coefficient of $\beta = 2 \times 10^{-10} \text{ cm}^3 \text{ s}^{-1}$, and estimate an upper bound of $8 \times 10^{-18} \text{ cm}^2$ for the ionization cross section of the 5P state at 405 nm. The combined temperature and density improvement in the 405 nm MOT is a twenty-fold increase in phase space density over our 767 nm MOT, showing enhanced pre-cooling for quantum gas experiments. A qualitatively similar enhancement is observed in a 405 nm MOT of bosonic 41 K.

[1] Physical Review A, 84, 063420 (2011)

Dylan Jervis University of Toronto

Date submitted: 31 Jan 2012

Electronic form version 1.4