Abstract Submitted for the DAMOP12 Meeting of The American Physical Society

Engineering 2D Ising Interactions in a Large (N>100) Ensemble of Trapped Ions¹ BRIAN SAWYER, JOSEPH BRITTON, NIST-Boulder, CO, ADAM KEITH, NCSU, Raleigh, NC, JOSEPH WANG, JAMES FREERICKS, Georgetown University, HERMANN UYS, CSIR, South Africa, MICHAEL BIER-CUK, University of Sydney, JOHN BOLLINGER, NIST-Boulder, CO — Experimental progress in atomic, molecular, and optical physics has enabled exquisite control over ensembles of cold trapped ions. We have recently engineered longrange Ising interactions in a two-dimensional, 1-mK Coulomb crystal of hundreds of ${}^{9}\text{Be}^{+}$ ions confined within a Penning trap. Interactions between the ${}^{9}\text{Be}^{+}$ valence spins are mediated via spin-dependent optical dipole forces (ODFs) coupling to transverse motional modes of the planar crystal. A continuous range of inverse power-law spin-spin interactions from infinite $(1/r^0)$ to dipolar $(1/r^3)$ are accessible by varying the ODF drive frequency relative to the transverse modes. The ions naturally form a triangular lattice structure within the planar array, allowing for simulation of spin frustration using our generated antiferromagnetic couplings. We report progress toward simulating the ferromagnetic/antiferromagnetic transverse quantum Ising Hamiltonians in this large ensemble. We also report spectroscopy, thermometry, and sensitive displacement detection ($\sim 100 \text{ pm}$) via entanglement of valence spin and drumhead oscillations.

¹This work supported by the DARPA-OLE program.

Brian Sawyer NIST, Boulder

Date submitted: 27 Jan 2012

Electronic form version 1.4