Collective excitations in quasi-2D Condensates LIN XIA, DANIEL LOBSER, ERIC CORNELL, JILA, National Institute of Standards and Technology and University of Colorado — In lower-dimensional gases, remarkable physical phenomena arise due to confinement effects, for example the Berezinskii-Kosterlitz-Thouless transition or the Tonks-Girardeau gas. In a quasi-2D condensate, the frequency of collective excitations are shifted because of 2D effects [1,2]. We report our latest results on the measurements of collective excitation frequencies in quasi-2D condensates. These frequencies are normalized by precise measurements of the trapping frequency.