Abstract Submitted for the DAMOP12 Meeting of The American Physical Society

Adiabatic Quantum Computing with Neutral Atoms¹ AARON HANKIN, University of New Mexico, GRANT BIEDERMANN, GEORGE BURNS, YUAN-YU JAU, CORT JOHNSON, SHANALYN KEMME, ANDREW LAN-DAHL, MICHAEL MANGAN, L. PAUL PARAZZOLI, PETER SCHWINDT, DARRELL ARMSTRONG, Sandia National Laboratories, IVAN DEUTSCH TEAM², MARK SAFFMAN TEAM³ — We are developing, both theoretically and experimentally, a neutral atom qubit approach to adiabatic quantum computation. Using our microfabricated diffractive optical elements, we plan to implement an array of optical traps for cesium atoms and use Rydberg-dressed ground states to provide a controlled atom-atom interaction. We will develop this experimental capability to generate a two-qubit adiabatic evolution aimed specifically toward demonstrating the two-qubit quadratic unconstrained binary optimization (QUBO) routine.

¹Work funded by Laboratory Directed Research and Development ²University of New Mexico ³University of Wisconsin

Aaron Hankin University of New Mexico and Sandia National Laboratories

Date submitted: 27 Jan 2012

Electronic form version 1.4