Altered States of Solid Xenon1 MARK LIMES, ZAYD MA, BRIAN SAAM, University of Utah — Relaxation processes and structure in solid Xe were studied using hyperpolarization of 129Xe via spin-exchange from optically pumped Rb. In an applied field of 2T, we studied both longitudinal and transverse 129Xe relaxation; the former as a function of freezing conditions and the latter as a function of both freezing conditions and dilution of 129Xe and 131Xe atoms relative to spin-zero species. A flow-through polarizer [1] is used to freeze and collect solid Xe (both 129Xe-enriched and naturally abundant), where we adjust the partial pressure of Xe in order to alter freezing conditions, which yield reproducible differences in spin-lattice relaxation times of greater than 10\%, apparently by varying the grain size. This is surprising because the mechanism is supposed to be a bulk Raman-phonon scattering process. In a separate convection cell [2] experiment, we find that reducing the concentration of 129Xe and 131Xe narrows the NMR line shape, as expected. However, several anomalous features also arise, depending on the freezing rate. Dilute concentrations of spin-1/2 129Xe range from 10\% to below 1\%.

1 NSF PHY 0855482

1 Schrank, et al., PRA 80, 063424 (2009).
2 Su, et al., APL 85, 2429 (2004).

Mark Limes
University of Utah

Date submitted: 31 Jan 2012
Electronic form version 1.4