Abstract Submitted for the DAMOP13 Meeting of The American Physical Society

Relativistic configuration interaction calculations of transition energies and hyperfine quenching rates for Ne-like ions¹ M.H. CHEN, K.T. CHENG, Lawrence Livermore National Laboratory — Relativistic configuration interaction (RCI) calculations of Ne-like $2p^53s - 2p^6$ transition energies and hyperfine quenching rates have been performed. Large-scale CI expansions exceeding 600,000 configurations are realized with a new, parallel version of our RCI code. Since initial and final states are not in the same complex, we use $2p^53s$ potentials for the initial excited state and $2p^6$ potential for the final ground state to generate B-spline basis functions. Relaxation effects on transition energies thus calculated range from -0.5371 eV in Na⁺ to -0.0077 eV in Xe⁴⁴⁺. Our results are compared with electron beam ion trap measurements of Ne-like W⁶⁴⁺ [P. Beiersdorfer et al., Phys. Rev. A 86, 012509 (2012)], with NIST database, and with other theoretical predictions.

¹Work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

K. T. Cheng Lawrence Livermore National Laboratory

Date submitted: 16 Jan 2013 Electronic form version 1.4