Abstract Submitted for the DAMOP13 Meeting of The American Physical Society

Pumping K_{α} Resonance Fluorescence by Monochromatic X-Ray Sources¹ ANIL PRADHAN, SULTANA NAHAR, The Ohio State University — We demonstrate the correspondence between theoretically calculated K-shell resonances lying below the K-edge in multiple ionization states of an element² (Pradhan et al 2009), and recently observed K_{α} resonances in high-intensity X-ray free-electron laser (XFEL) plasmas³ (Vinko et al 2012). Resonant absorptions due to K_{α} transitions in aluminum ions are computed and found to reproduce experimentally observed fluorescence features. Calculated fluorescence features for titanium are presented for possible observation of K_{α} resonances in the 4.5-5.0 keV energy range. A possibly sustainable excitation mechanism for K_{α} resonance fluorescence might be implemented using two monochromatic X-ray beams tuned to the K-edge and the K_{α} resonant energies simultaneously. This targeted ionization/excitation would create inner-shell vacancies via Auger decay, as well as pump K_{α} resonances. The required X-ray fluence to achieve resonance fluorescence would evidently be much less than in the XFEL experiments, and might enable novel biomedical applications.

 1 DOE, NSF

²A. K. Pradhan, S. S. N. Nahar, et al, J. Phys. Chem. A **113**, 12356 (2009).
³S. M. Vinko et al, Nature **482**, 59 (2012).

Sultana Nahar The Ohio State University

Date submitted: 22 Jan 2013

Electronic form version 1.4