High-quality multi-GeV electron beams from auto-resonance laser-acceleration

Yousef Salamin 1, Department of Physics, American University of Sharjah, Benjamin Galow, Jianxing Li, Zoltan Harman, Christoph Keitel, Max-Planck Institute for Nuclear Physics in Heidelberg, Germany — Results from many-particle simulations will be presented that demonstrate feasibility of generating an electron bunch of over 10-GeV energy and ultra-high quality (relative energy spread $\sim 10^{-4}$) by cyclotron auto-resonance. The scheme employs a static magnetic field oriented along the direction of propagation of a laser beam. Tremendous energy gain by the electron from the laser field occurs if the injection conditions and laser and magnetic field parameters conspire to achieve auto-resonance: when the cyclotron frequency of the electron around the lines of the magnetic field match the Doppler-shifted frequency of the laser as seen by the electron. Accelerated electron bunches of the above-mentioned characteristics are suitable for fundamental high-energy particle physics research. In our calculations, the laser peak intensities and axial magnetic field strengths required are up to about 10^{18} W/cm2 and 60 T, respectively. Gains exceeding 100 GeV are shown to be possible when weakly focused pulses from a 200-PW future laser facility are used.

1Max-Planck Institute for Nuclear Physics in Heidelberg, Germany