Abstract Submitted for the DAMOP13 Meeting of The American Physical Society

Breathing mode of a harmonically trapped two-dimensional Fermi gas CHAO GAO, ZHENHUA YU, Institute for Advanced Study, Tsinghua University, COLD ATOM THEORY GROUP AT IAS, TSINGHUA TEAM — For two-dimensional (2D) atomic Fermi gases in harmonic traps, the SO(2, 1) symmetry is broken by the inter-atomic interaction explicitly via the contact correlation operator. Consequently, the frequency of the breathing mode ω_B of a 2D Fermi gases in a harmonic trap with frequency ω_0 can be different from $2\omega_0$, which is implied by symmetry. At zero temperature, we use the sum rules of density correlation functions to yield upper bounds for ω_B .We further calculate ω_B through the Euler equations in the hydrodynamic regime. The obtained value of ω_B satisfies the upper bounds and shows deviation from $2\omega_0$.

> Chao Gao Institute for Advanced Study, Tsinghua University

Date submitted: 06 Feb 2013

Electronic form version 1.4