Abstract Submitted for the DAMOP13 Meeting of The American Physical Society

A novel technique for measuring the microwave transitions and the indirect spin-orbit splittings in the high angular momentum Rydberg states of barium¹ JIRAKAN NUNKAEW, Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, EVAN KIM, THOMAS GALLAGHER, Department of Physics, University of Virginia — We use a novel detection technique, selective laser excitation to the autoionizing states, to observe the microwave transitions of Ba from 6sng to 6snh, 6sni and 6snk for n=15, 16, 17 and 18. We extract the dipole and quadrupole polarizabilities of Ba⁺ from the measured intervals between the 6snh - 6sni and 6sni - 6snk states of Ba using the non-adiabatic core polarization model. The values we determine for the dipole and quadrupole polarizabilities are $\alpha_d = 129.03(57) \ a_0^3$ and $\alpha_q = 1790(76) \ a_0^5$, respectively. The energies of the $6sn\ell$, $\ell \geq 5$ states are split by the indirect spinorbit coupling of the Ba core to the Rydberg electron, producing the K splittings. From the K splittings we extract the ionic dipole and quadrupole matrix elements, $< 6s|r|6p >= 4.10(9) \ a_0$ and $< 6s|r^2|5d >= 9.64(15) \ a_0^2$, respectively.

¹This work has been supported by the U.S. Department of Energy.

Jirakan Nunkaew Department of Physics and Materials Science, Faculty of Science, Chiang Mai University

Date submitted: 23 Jan 2013

Electronic form version 1.4