Abstract Submitted for the DAMOP13 Meeting of The American Physical Society

Precision Radio Frequency Spectroscopy in the ${}^{137}\text{Ba}^+$ 5D_{5/2} Manifold¹ MATTHEW HOFFMAN, SPENCER WILLIAMS, ANUPRIYA JAYAKUMAR, E.N. FORTSON, BORIS B. BLINOV, University of Washington — As atomic theorists' computational techniques become increasingly accurate and sophisticated, precision experiments are necessary to confirm the results of these calculations. The substructure of the long-lived $5D_{5/2}$ level of $^{137}Ba^+$ is an ideal testing ground, where calculations are limited by uncertainty in the wavefunctions used. The intervals of this hyperfine manifold are parameterized to first-order by the well-studied nuclear magnetic dipole moment (μ) and the electric quadrupole moment (Q). However, the presence of a nuclear magnetic octupole moment, Ω , as well as second-order corrections in the hyperfine interaction of the same magnitude as Ω , offer additional contributions which are measurable using precision radio-frequency (rf) spectroscopy.² By accurately measuring hyperfine intervals with transitions that are insensitve to magnetic field to first order, and using results from the $5D_{3/2}$ level,³ we can extract Ω as well as the magnitude of the second order corrections to compare with theory.

¹This research is supported by the National Science Foundation, Grant No. PHY-09-06494.

²Phys. Rev. A 77, 052503 (2008) ³Opt. Express 20, 21379-21384 (2012)

> Matthew Hoffman University of Washington

Date submitted: 24 Jan 2013

Electronic form version 1.4