Abstract Submitted for the DAMOP13 Meeting of The American Physical Society

The Bichromatic Optical Force on the Atomic Life- time Scale¹ CHRISTOPHER CORDER, BRIAN ARNOLD, HAROLD METCALF, Physics and Astronomy, Stony Brook University, 11794-3800 — Our experimental and theoretical studies of the bichromatic force (BF) have shown that its strength and velocity range are very much larger than those of the usual radiative force.² Since the BF relies on stimulated effects, the role of spontaneous emission in laser cooling has come into question.³ We drive the $2^3S \rightarrow 3^3P$ transition of He at $\lambda = 389$ nm with laser frequencies $\omega_{\ell} = \omega_a \pm \delta$, where ω_a is the atomic transition frequency and $\delta \sim 30$ MHz. Thus the velocity range of the force is $\Delta v \sim \delta/2k = 6$ m/s. Because of the large and nearly constant strength of the BF, $F \sim \hbar k \delta / \pi$, all atoms can reach the velocity limit in a time $\leq M \Delta v / F = \pi / 4 \omega_r = 380$ ns, where ω_r is the atomic recoil frequency. In our experiment a beam of He atoms crosses perpendicular through the BF laser beams in 380 ns so the relatively long lifetime of the excited state ($\tau = 106$ ns) allows one or at most two spontaneous emission events, despite Δv of many tens of recoils. We will present our initial measurements of the BF in this new domain.

¹Supported by ONR and Dept. of Ed. GAANN ²Phys. Rev. Lett. **93** 213004 (2004), Phys. Rev. A **70**, 063402 (2001) ³Phys. Rev. A **77**, 061401 (2008)

> Harold Metcalf Physics and Astronomy, Stony Brook University, 11794-3800

Date submitted: 24 Jan 2013

Electronic form version 1.4