Abstract Submitted for the DAMOP13 Meeting of The American Physical Society

Magic optical trapping of Rydberg atoms¹ SIYUAN ZHANG², GANG LI³, LARRY ISENHOWER, MARK SAFFMAN, University of Wisconsin — We demonstrate trapping of both ground and Rydberg excited Cesium atoms in an optical bottle beam trap. The trap is generated by crossing two tightly focused Laguerre-Gaussian LG₀₁ beams. This generates a dark region completely surrounded by light which is needed to trap Rydberg states which have negative polarizability. If the wavelength of light is chosen to also have a negative polarizability for the ground state then both states will be trapped. We demonstrate a trap lifetime for the Cs $61d_{3/2}$ state of 360 μ s and a trap induced ground-Rydberg transition shift on the order of 100 kHz.

Mark Saffman University of Wisconsin

Date submitted: 24 Jan 2013 Electronic form version 1.4

¹This work was supported by IARPA through ARO, and DARPA through AFOSR.

²current address KLA Tencor

³current address Shanxi University