Abstract Submitted for the DAMOP13 Meeting of The American Physical Society

Hyperfine-induced radiative decay rates of heliumlike ⁸B and ¹¹B¹ QIXUE WU, G.W.F. DRAKE, University of Windsor — Hyperfine mixing of *LS*coupled atomic states can open new radiative decay channels for processes that would normally be strongly suppressed. For example, spin-forbidden processes may become enhanced. We study the lifetimes of the hyperfine levels of the two-electron isotopes ⁸B (I = 2) and ¹¹B (I = 3/2) in connection with nuclear charge radius measurements by the isotope shift method [1]. We find that the effects of hyperfine structure are relatively small for both ⁸B and ¹¹B. For the 1s2p ¹P hyperfine states, the decay rates are dominated by transitions to the $1s^2$ ¹S ground state with $A = 3.72 \times 10^{11}$ s⁻¹. For the 1s2p ³P states, hyperfine structure alters the decay rates by less than 1%. The dominant decay channel is the spin-allowed transition to the 1s2s ³S manifold of states. The decay rate for ⁸B summed over final state hyperfine structure is in the range $A = 4.535 \times 10^7$ to 4.555×10^7 s⁻¹. The decay rate to the ground state for the 1s2p ³P₁ state is 4.169×10^6 to 4.283×10^6 s–1. The effects of hyperfine structure are smaller still for ¹¹B.

[1] W. Noertershaeuser *et al.* Phys. Rev. A **83**, 012516 (2011); Phys. Rev. Lett. **102**, 062503 (2009).

¹Research supported by NSERC and SHARCNET.

Gordon Drake University of Windsor

Date submitted: 25 Jan 2013

Electronic form version 1.4