IR-laser assisted XUV double ionization of helium1 AIHUA LIU, Department of Physics, Kansas State University — We studied the few-XUV photon and multi (XUV+IR)-photon double ionization of helium by solving the time-dependent Schrödinger equation within a finite element discrete variable representation scheme. For the equal energy sharing, we discuss the joint angular distributions of the two emitted electrons for \(n \)-XUV photon double ionization with (for \(n = 1 \)) and without (for \(n = 1, 2, 3 \)) the presence of a short IR pulse. We find that the assisting IR pulse promotes side-by-side emission (both electrons are emitted along the linear laser polarization axis in the same directions) and enables the back-to-back emission (electrons are emitted in opposite directions along the laser polarization).

1Supported by the US NSF and DOE.