Lee-Yang cluster expansion approach to BCS-BEC crossover
NAOYUKI SAKUMICHI, Department of Physics, The University of Tokyo,
YUSUKE NISHIDA, Theoretical Division, Los Alamos National Laboratory,
MASAHITO UEDA, Department of Physics, The University of Tokyo — A dilute
gas of spin-1/2 Fermi atoms can continuously evolve from Cooper pairing to Bose-
Einstein condensation (BEC) of tightly-bound dimers by changing the strength of
interaction between them. This is called BCS-BEC crossover and has realized by
using a ultracold atomic gases. In this work, we propose a new systematic approach
to describe the BCS-BEC crossover based on a cluster expansion method of Lee and
Yang. Here, the cluster expansion is a systematic expansion of the equation of state
in terms of the fugacity $z := e^{\beta \mu}$ as $\beta \lambda^3 p = 2z + b_2 z^2 + b_3 z^3 + \ldots$, with inverse
temperature $\beta = (k_B T)^{-1}$, chemical potential μ, pressure p, and thermal de Broglie
length $\lambda := (2\pi \hbar \beta / m)^{1/2}$. We show the following results: (i) in the weak-coupling
limit, the Thouless criterion and the number equation of Nozieres and Schmitt-Rink
are derived, and thereby the critical temperature is identical with that of the BCS
theory; (ii) in the strong-coupling limit, the critical temperature is identical with
that of the BEC of non-interacting dimers; (iii) The exact second cluster integral b_2,
which is dominant in the high-temperature region, is also included in the expansion
for any value of an s-wave scattering length a.

Naoyuki Sakumichi
Department of Physics, The University of Tokyo

Date submitted: 30 Jan 2013

Electronic form version 1.4