Abstract Submitted for the DAMOP13 Meeting of The American Physical Society

Rydberg helium and the helium dimer: Relativistic and retardation effects¹ J.F. BABB, ITAMP, Harvard-Smithsonian — The energy level structure of a Rydberg helium atom with one electron in a highly-excited nl state can be modeled with high accuracy using an effective potential based on a long-range expansion in powers of the distance r between the Rydberg electron and the nucleus. In addition to the dominant Coulomb interactions, small relativistic $O(\alpha^2)$ terms and smaller quantum electrodynamical $O(\alpha^3)$ effects, as well as retardation effects, can be included. For the helium dimer He₂ a similar effective potential in powers of the internuclear distance R can be developed [Przybytek et al. PRL 108, 183201 (2012)]. The interpretations of the effective potentials for Rydberg He and for the He dimer are discussed.

¹Supported in part by the NSF

James Babb Harvard-Smithsonian Center for Astrophysics

Date submitted: 25 Jan 2013 Electronic form version 1.4