Abstract Submitted
for the DAMOP13 Meeting of
The American Physical Society

Atom chip apparatus for experiments with ultracold rubidium and potassium

M.K. IVORY, A.R. ZILTZ, C.T. FANCHER, A.J. PYLE, Dept. of Physics, College of William and Mary, D. JERVIS, Dept. of Physics, University of Toronto, S. AUBIN, Dept. of Physics, College of William and Mary — We present a dual chamber apparatus for experiments with ultracold gases of 87Rb and 39K atoms on an atom chip. The apparatus produces quasi-pure Bose-Einstein condensates (BEC) of 3×10^4 87Rb atoms in an atom chip micro-magnetic trap. We operate a 39K magneto-optical trap (MOT) and describe our progress toward loading these atoms into the chip trap. The apparatus features a dual-species MOT, a purely electrical magnetic transport system, and a radio-frequency (RF) capable atom chip system. The apparatus is well suited for studies of atom-surface forces, quantum pumping and transport experiments, and RF manipulation of cold atoms. We present our plans and progress for an experiment to study scattering of a BEC from an amplitude modulated barrier, a first step toward observing quantum pumping. We also detail our progress on using RF potentials for mechanical manipulation of 39K atoms at the chip.

This work was supported by Jeffress Memorial Trust, VSGC, and the College of William and Mary.

Seth Aubin
Dept. of Physics, College of William and Mary