DAMOP13-2013-000664

Abstract for an Invited Paper for the DAMOP13 Meeting of the American Physical Society

Precision comparison of the g-factor of the proton and anti-proton

JACK DISCIACCA, Harvard University

We report the first measurement of the antiproton magnetic moment using a single antiproton. The magnetic moment in nuclear magnetons is $\mu_{\bar{p}}/\mu_N = -2.792845 \pm 0.000012$, a 4.4 parts per million (ppm) measurement. This represents a factor of 680 improvement in precision over previous work using exotic atom spectroscopy, which has achieved a 3000 ppm precision and remained essentially unchanged in the past 20 years.^{1,2} Our measurement allows for an improved comparison of the proton and antiproton magnetic moments, yielding a result consistent with the prediction of charge, parity and time reversal symmetry. Following a proof of principle, 2.5 ppm measurement of the proton magnetic moment,³ the experiment was moved to CERN for the antiproton experiment. Initial work focused on catching, cooling and trapping a single antiproton from the 5 MeV beam at CERN's Antiproton Decelerator. Following this work, we undertook a magnetic moment measurement. The spin and cyclotron frequency are measured to determine the g-factor, $g/2 = f_s/f_c$. Prospects for further improvement should be possible with single spin flip detection, similar to what was used to measure the electron magnetic moment - currently the most precisely measured property of a fundamental particle.⁴ The new antiproton magnetic moment measurement is likely a first step towards improved precision by an additional factor of 10³ or 10⁴ improvement, with a precision at the part per billion level.^{5,6,7}

¹A. Kreissl, et al. Z. Phys. C: Part. Fields **37**, 557 (1988).

²T. Pask, et al. Phys. Lett. B **678**, 55 (2009).

³J. DiSciacca and G. Gabrielse. Phys. Rev. Lett. **108**, 153001 (2012)

⁴D. Hanneke, S. Fogwell, and G. Gabrielse, Phys. Rev. Lett. **100**, 120801 (2008).

⁵N. Guise, J. DiSciacca, and G. Gabrielse. Phys. Rev. Lett. **104**, 143001 (2009).

⁶S. Ulmer, et al. Phys. Rev. Lett. **106**, 253001 (2011).

⁷C. C. Rodegheri, et al. New J. Phys. **14**, 063011 (2012).