Higher-Order Nonlinearity of Refractive Index: the Case of Argon

MARYAM TARAZKAR, (1,2), DMITRI ROMANOV, (1,3), ROBERT LEVIS, (1,2), (1) Center for Advanced Photonics Research, (2) Department of Chemistry, (3) Department of Physics, Temple University, Philadelphia, PA 19122 —

Higher-order dynamic Kerr effect (HOKE) is currently at the center of a controversy regarding the mechanisms of laser filamentation. A strong HOKE with a crossover from positive to negative nonlinear refractive index at intensities well below the ionization threshold, would engender plasma-free filamentation and exotic new effects in light propagation. Experimental evidence of HOKE crossover or lack thereof is being hotly debated. Motivated by this debate, we report the frequency-dependent nonlinear refractive index coefficients n_2 and n_4 for atmospheric-pressure argon gas, calculated via developed coupled cluster cubic response approach implemented in Dalton program. All calculations are performed at the CCSD level of theory with t-Aug-cc-PV5Z basis set. The benchmark dispersion curve for n_2 reproduces correctly the available experimental data and agrees well with previously-reported theoretical calculations. The nonlinear refractive index n_4 is obtained using the relations between different hyperpolarizability coefficients, and the latter are calculated via the auxiliary static electric field approach on the basis of n_2. We found that the higher-order nonlinear refraction index n_4 is positive over the wavelengths 300 nm-1500 nm. This result runs counter to the HOKE crossover hypothesis.

1Support from the Air Force Office of Scientific Research, Grant No. N00014-10-0293, is gratefully acknowledged.

Dmitri Romanov
Department of Physics, Temple University

Date submitted: 29 Jan 2013 Electronic form version 1.4