Abstract Submitted for the DAMOP13 Meeting of The American Physical Society

Final state electron distributions of ${}^{6}\text{Li}^{+}$ following β -decay of ${}^{6}\text{He}^{1}$ EVA SCHULHOFF, G.W.F. DRAKE, University of Windsor — When the isotope ⁶He undergoes β -decay into ⁶Li⁺ (⁶He \rightarrow ⁶Li⁺ + $e^- + \bar{\nu}_e$), there is a sudden change in the Coulomb potential binding the atomic electrons. In response, a given initial electronic state of ⁶He relaxes into all possible final electronic states of ⁶Li⁺. In this work we calculate the redistribution function. The method of calculation involves expanding the initial state of 6 He in terms of a complete set of final states of 6 Li⁺. A Hylleraas-type basis set was used to create a pseudospectrum (up to 797 states) which spans both the bound and continuum states of Li⁺. Starting from both the $1 {}^{1}S_{0}$ and $2 {}^{3}S_{1}$ initial states ⁶He, the excitation probabilities to the final ⁶Li⁺ states, as well as the total ionization probabilities, were calculated in the sudden approximation with neglect of nuclear recoil. The transition probabilities from the $1 {}^{1}S_{0}$ initial state are compared with those of Wauters and Vaeck [Phys. Rev. C 53, 497 (1996)] and Frolov and Ruiz [Phys. Rev. A 82, 042511 (2010)]. Finally, the transition probabilities show resonant behavior near the energies corresponding to doubly-excited states.

¹Research supported by NSERC and SHARCNET.

Gordon Drake University of Windsor

Date submitted: 28 Jan 2013

Electronic form version 1.4