Towards site-resolved imaging of fermionic lithium in a two-dimensional optical lattice

SEBASTIAN BLATT, FLORIAN HUBER, MAXWELL F. PARSONS, ANTON MAZURENKO, MARKUS GREINER, Harvard University — Recent successes in site-resolved imaging and control of bosonic 87Rb atoms trapped in optical lattices enable new possibilities for studying strongly-correlated quantum systems with ultracold atoms. We aim to extend this technique to fermionic atoms, where quantum magnetism arises naturally due to fermionic statistics. We plan to load ultracold 6Li atoms into a two-dimensional square lattice 10 μm below a high-resolution microscope objective. The light mass of 6Li leads to system dynamics on fast timescales, and its broad Feshbach resonances give us control over the atomic interaction strength. A major challenge with 6Li is cooling the atoms during imaging. The hyperfine structure of 6Li’s excited 2P electronic state is not resolved, and cooling techniques are limited. In addition, 6Li has a large recoil energy of 75 kHz. We expect that these difficulties may be solved by combining Raman sideband cooling with a deep optical lattice, and we report our progress on this front.