Critical nuclear charge to bind two-electron atoms1 MICHAEL BUSUTTIL, HAJAR AL-KHAZRAJI, AMIRREZA MOINI, TRAVIS VALDEZ, G.W.F. DRAKE, University of Windsor — For an atom with infinite nuclear mass, there exists a critical nuclear charge Z_c that is just sufficient to bind the nucleus plus two electrons into a heliumlike structure. As recently discussed by Guevera and Turbiner [1], the value of Z_c in the nonrelativistic limit is in the neighborhood of 0.91085. The objective of the present work is to present results of improved accuracy for Z_c by use of our double basis set method in Hylleraas coordinates [2]. The method is particularly well adapted to the case where one electron is strongly bound and the other is at the limit of becoming unbound. The results are analysed in terms of a Puiseux expansion in fractional powers of $(Z - Z_c)$, yielding the somewhat smaller preliminary value $Z_c = 0.910730(6)$. The value of Z_c is related to the analytic structure of the energy $E(Z)$ and the radius of convergence of a $1/Z$ expansion for the energy.

1Research supported by NSERC and SHARCNET.

Gordon Drake
University of Windsor

Date submitted: 30 Jan 2013
Electronic form version 1.4