Precision measurement of the Stark effect on a Yb lattice clock
NATHAN HINKLEY, University of Colorado, Boulder, JEFF A. SHERMAN, KYLE BELOY, NATHANIEL B. PHILLIPS, RICHARD W. FOX, CHRIS W. OATES, ANDREW D. LUDLOW, NIST, Boulder — Ultracold alkaline-earth-like atoms, confined within an optical lattice and exploiting the ultra-narrow 1S_0 to 3P_0 atomic transition, are utilized as high-accuracy frequency standards and precision timekeepers. The blackbody Stark effect and residual lattice ac-Stark shifts not canceled at the magic wavelength (where scalar Stark shifts between clock states 1S_0 and 3P_0 are balanced) both remain as the principle contributions to the frequency uncertainty. We describe precision measurements that carefully characterize these effects, paving the way towards optical lattice clock systems with 10^{-17} level uncertainty. First, we determine the dynamic effect of blackbody radiation (BBR) on the atomic clock states, constraining the BBR shift uncertainty from an ideal blackbody environment to 1.1×10^{-18}. Next, we discuss precision measurements of the lattice-induced Stark shifts from the E1 polarizability, hyperpolarizability, and multipolar terms. Finally, we demonstrate the proficiency of lattice clock systems for precision frequency measurements by directly comparing two such Yb standards, and achieve 10^{-17} frequency stability in <1000 s.