Imaging of energy transfer in a frozen Rydberg gas

DONALD P. FAHEY, Bryn Mawr College, THOMAS J. CARROLL, Ursinus College, MICHAEL W. NOEL, Bryn Mawr College — The dipole-dipole interaction is the dominant mechanism for energy exchange among atoms in a frozen Rydberg gas on microsecond time scales. By way of selective field ionization and a spatially sensitive ion detector, we image the transfer of energy among Rydberg atoms. We explore the effect of different spatial arrangements of Rydberg atoms on the energy transfer.

1This work was supported by the National Science Foundation (grant no. 1205897) and through the Extreme Science and Engineering Discovery Environment (supported by NSF grant no. OCI-1053575).