Abstract Submitted for the DAMOP13 Meeting of The American Physical Society

A model of N_2 extreme-ultraviolet photoabsorption and dissociation ALAN HEAYS, Leiden University, The Netherlands, BRENTON LEWIS, STEPHEN GIBSON, The Australian National University — The nitrogen molecule is a long-studied and difficult problem in molecular spectroscopy, and many important details of its interaction with radiation remain unexplained. A principal problem of continuing interest concerns the resonant photoabsorption and resultant predissociation of N₂ when exposed to extreme-ultraviolet radiation. A model of the excited states of N_2 has been developed in order to quantify their interactions and reproduce photoabsorption and photodissociation cross sections between 100000 and 118500 cm^{-1} (100 and 84 nm). This solves the radial Schroedinger equation within a coupled-channels formulation for new diabatic potential-energy curves, homogeneous and heterogeneous state mixing, and electronic transition moments for the optically allowed transitions. The accidental predissociation of ${}^{1}\Pi_{\mu}$ states between 100000 and 112500 cm^{-1} has been quantitatively modelled by spin-orbit coupling these to a set of ${}^{3}\Pi_{u}$ and ${}^{3}\Sigma_{u}^{+}$ states which includes unbound members. Following reference to a large experimental database, the model is both accurate and comprehensive and may be used to simulate synthetic cross sections suitable for use in high-resolution photochemical models of atmospheric and astrophysical environments.

> Alan Heays Leiden University

Date submitted: 22 Feb 2013

Electronic form version 1.4