Hybrid Optomechanics in Strong Coupling Regime\textsuperscript{1} YOGESH PATIL, AJAY BHAAT, HARRY CHEUNG, SUNIL BHAVE, MUKUND VEN-GALATTORE, Cornell University — We describe progress towards the realization of a hybrid optomechanical system consisting of an ultracold gas of atoms parametrically coupled to a microtoroidal optomechanical resonator. Our setup aims to harness the long-lived coherence of the collective atomic spin of an ultracold atomic gas to enhance the optomechanical coupling. This spin-mediated ultra-strong coupling aids in enhanced cooling of the mechanical resonator as well as in substantially increasing the sensitivity of micromechanical devices used in transduction applications, as also in inducing single-photon nonlinearities and other quantum processing [1]. We also report progress on using Raman sideband cooling and nondestructive imaging on fermionic species (\textsuperscript{6}Li), augmented by single site resolution imaging for effecting a quantum gas microscope.


\textsuperscript{1}This work is funded by the NSF and the Cornell Center for Materials Research.