Abstract Submitted for the DAMOP14 Meeting of The American Physical Society

The photoabsorption spectra of a Xe atom encapsulated inside C_{54} , C_{56} , and C_{58} fullerenes¹ ZHIFAN CHEN, ALFRED Z. MSEZANE, Clark Atlanta University — The photoabsorption spectra of a Xe atom encapsulated inside C_{54} , C_{56} , and C_{58} have been investigated using the time-dependent-density-functional-theory (TDDFT). The most stable isomers for these fullerenes are respectively, $C_{54} C_{2v}$:540, $C_{56} C_s$:864, and $C_{58} C_{3v}$:1205. The stuctures of these fullerenes have been created using the Fullerene4.4 [1] package. The structures are then optimized using DMol₃ software. The absolute photoabsorption cross sections of C_{54} , C_{56} , C_{58} and Xe@C₅₄, Xe@C₅₆, Xe@C₅₈ are evaluated using TDDFT. The results demonstrate that, except for the Xe atom inside C_{58} , which has similar confinement resonances as those of Xe@C₆₀, the Xe atoms inside C_{54} and C_{56} have totally different spectra. Because of this the measured spectra, with the loss of one or more pairs of C atoms, may be affected by the spectra of the Xe inside C_{54} (or C_{56} , C_{58}). More discussions about the spectra of fullerenes and endohedral fullerenes will be presented at the conference.

[1] P. Schwerdtfeger et al J. Comput. Chem. 35 1508 (2013).

¹Supported by DOE, Basic Energy Sciences and ARO (Grant W911NF-11-1-0194)

Zhifan Chen Clark Atlanta University

Date submitted: 24 Jan 2014

Electronic form version 1.4