Abstract Submitted for the DAMOP14 Meeting of The American Physical Society Why criteria for impulse approximation in Compton scattering fail in relativistic regimes L.A. LAJOHN, R.H. PRATT, Unversity of Pittsburgh — The assumption behind impulse approximation (IA) for Compton scattering is that the momentum transfer q is much greater than the average $\langle p \rangle$ of the initial bound state momentum distribution p. Comparing with S-matrix results, we find that at relativistic incident photon energies (ω_i) and for high Z elements, one requires information beyond $\langle p \rangle / q$ to predict the accuracy of relativistic IA (RIA) differential cross sections. The IA expression is proportional to the product of a kinematic factor X^{nr} and the symmetrical Compton profile J, where $X^{nr} = 1 + \cos^2\theta$ (θ is the photon scattering angle). In the RIA case, X^{nr} , independent of p, is replaced by $X^{rel}(\omega, \theta, p)$ in the integrand which determines J. At nr energies there is virtually no RIA error in the position of the Compton peak maximum (ω_f^{pk}) in the scattered photon energy (ω_f) , while RIA error in the peak magnitude can be characterized by $\langle p \rangle /q$. This is because at low ω_i , the kinematic effects described by S-matrix (also RIA) expressions behave like X^{nr} , while in relativistic regimes (high ω_i and Z), kinematic factors treated accurately by S-matrix but not RIA expressions become significant and do not factor out. > L.A. LaJohn Unversity of Pittsburgh Date submitted: 26 Jan 2014 Electronic form version 1.4