Time- and Frequency-Dependent Imaging of Nuclear Dynamics in Laser-Excited Noble-Gas Dimers

M. MAGRAKVELIDZE, KSU, A. KRAMER, Drake University, K. BARTSCHAT, Drake University, U. THUMM, KSU — We study the nuclear dynamics of noble-gas dimer ions resolved in time using intense ultrashort pump in combination with delayed probe laser pulses. We compare our time-dependent numerical results with those from a complementary description of the same basic dynamics in the frequency domain. This alternative analysis is based on the Fourier transformation of the time- and internuclear-separation-dependent wavefunction probability density or, equivalently, the Fourier transformation of the delay-dependent kinetic-energy-release spectra [1]. Specifically, for pump-laser excited diatomic molecules, it allows for the characterization of their nuclear motion in terms of coherently superimposed stationary vibrational states and the mapping of the laser-dressed nuclear potential curves, thereby supplementing the time-domain formulation [2], as we will demonstrate for the sequence He$_2^+$ to Xe$_2^+$ of dimer cations.

[2] U. Thumm et al., Phys. Rev. A 77, 063401 (2008). This work was supported by the NSF and DOE.

Maia Magrakvelidze
KSU

Date submitted: 27 Jan 2014

Electronic form version 1.4