Abstract Submitted
for the DAMOP14 Meeting of
The American Physical Society

Trapped ion system for simulation of quantum spin models SYLVI
HAENDEL, DANILO DADIC, MICHAEL IP, WES CAMPBELL, UCLA — We
describe efforts to study and control ordered systems of charged particles and their
formation in an ion trap with radial symmetry. The system is realized within a
monolithic fused silica design. Using Yb$^+$ ions and an appropriate bichromatic
beatnote, an effective spin-spin interaction arises between the clock states of all pairs
of 171Yb$^+$ ions [1,2]. The range and sign of the resulting spin-spin interaction can
be controlled through tailoring of the beatnotes. Antiferromagnetic couplings can
be generated, allowing the study of highly frustrated magnetism. When simulating
frustrated spin system under periodic boundary conditions, the number of ions in the
trap plays an important role. For certain trap voltages, ions can crystallize in a 2D
planar array in the plane of the RF potential [3]. Nearest-neighbor antiferromagnetic
couplings will lead to a highly-frustrated ground state for an odd number of spins.
Increasing the number of ions to an even number changes the frustration in the
system. We also report on progress with linear RF traps of different architectures.