Abstract Submitted for the DAMOP14 Meeting of The American Physical Society

Electron elastic scattering off $A@C_{60}$ fullerenes: the "zerothorder" trends¹ M. HUNTER, M. COOPER, C. BAYENS, V. DOLMATOV, University of North Alabama — The theoretically revealed trends in electron elastic scattering off endohedral fullerenes $A@C_{60}$ associated with the nature of an encapsulated atom A, its size and spin (A = Ar, Xe, Ba, Cr and Mn) are highlighted. It is shown that placing an atom A inside the C_{60} cage can make electron scattering off $A@C_{60}$ weaker than off the empty C_{60} cage, especially when the encapsulated atom A donates an appreciable part of its electron density to the C_{60} cage, as do Ba, Cr and Mn. It is shown that, for such atoms, $e + A@C_{60}$ scattering can even be weaker than off the isolated atom A itself. In addition, if such encapsulated atom has also a nonzero spin S (Cr's S = 3, Mn's S = 5/2), then the C₆₀ cage can become "spincharged"; this results in a strong electron spin-dependence of $e + A@C_{60}$ scattering. In calculations, (a) electron correlation was ignored, (b) both the encapsulated atom A and C_{60} cage were regarded as non-polarizable targets, and (c) the C_{60} cage was modeled by a spherical annular well. Results, thus, provide the understanding of $e + A@C_{60}$ scattering in a "zeroth-order" approximation and, most likely, identify some of the most intrinsic properties of $e + A@C_{60}$ elastic scattering.

¹Supported by NSF Grant No. PHY-1305085

Valeriy K. Dolmatov University of North Alabama

Date submitted: 29 Jan 2014

Electronic form version 1.4