Abstract Submitted
for the DAMOP14 Meeting of
The American Physical Society

Forward light scattering from a dense and cold microscopic ^{87}Rb
sample1 KASIE KEMP, S.J. ROOF, M.D. HAVEY, Old Dominion University, I.M. SOKOLOV, D.V. KUPIRYANOV, State Polytechnic University, DEPARTMENT OF PHYSICS, OLD DOMINION UNIVERSITY COLLABORATION, DEPARTMENT OF THEORETICAL PHYSICS, STATE POLYTECHNIC UNIVERSITY COLLABORATION — In this paper we report on the near-resonance forward scattering of light in a cold atomic sample of ^{87}Rb ranging in density from 10^{11} to 10^{14} atoms/cm3. The sample, initially prepared in a magneto-optical trap, is loaded into a far-off-resonance trap (FORT) with a temperature of $\sim 100 \mu K$ and Gaussian radii of $\sim 3 \mu m$ and $\sim 280 \mu m$ in the transverse and longitudinal directions, respectively. Here the $F = 2 \rightarrow F' = 3$ nearly closed hyperfine transition is studied; in this case, far-off-resonance inelastic Raman transitions are weak. The experimental geometry consists of tightly focusing the near-resonance beam through the optically deep region of the FORT and collecting the transmitted light as a function of detuning from resonance. A shift in the spectral distribution of transmitted light is observed as a function of sample density.

1This research is supported by the National Science Foundation (Grant No. NSF-PHY-1068159)