Optical Control of Collisional Interactions in 6Li using Dark Molecular States

ARUNKUMAR JAGANNATHAN, Duke University, NITHYA ARUNKUMAR, North Carolina State University, ETHAN ELLIOT, Duke University, JAMES JOSEPH, JOHN THOMAS, North Carolina State University — We are developing “dark-state” two-optical field methods to control interactions in 6Li. Although external magnetic fields are typically used to tune the interaction strength in fermionic atoms near a Feshbach resonance, optical tuning methods can provide rapid temporal control and high-resolution spatial control thus enabling the study of non-equilibrium strongly interacting Fermi gases. However, optical tuning suffers from heating due to spontaneous scattering, which can be suppressed by a second optical field. We will report on the measurement of loss spectrum as a function of magnetic field and laser detuning near Feshbach resonances in 6Li and our progress on two-optical field loss suppression.

1AFSOR, ARO, DOE, NSF