Exploring the range of motion of atom traps formed in the diffraction pattern behind a pinhole for quantum computing1 IAN POWELL, TAYLOR SHANNON, SANJAY KHATRI, GLEN GILLEN, KATHARINA GILLEN-CHRISTANDL, California Polytechnic State University, San Luis Obispo — To solve the scalability issue of neutral atom quantum computing, we have investigated the diffraction pattern formed behind an array of pinholes as a possible two-dimensional quantum memory system \cite{1}. Exploiting polarization dependence and varying the incident laser angle may facilitate two-qubit gates by bringing pairs of atoms together and apart controllably \cite{2}. We have both experimentally and computationally explored the limits of the incident laser angle for the traps to remain viable for quantum computing. We will present a quantitative comparison of our computations and direct measurements of the diffraction pattern for a large range of incident angles. We will also discuss our progress towards constructing an experimental setup for transferring atoms from our magneto-optical trap (MOT) to the pinhole traps, including projection of our traps into the MOT cloud (proposed in \cite{3}) and an imaging system to characterize the atom traps.

1Work supported by the National Science Foundation Grant No. PHY-0855524.