Abstract Submitted for the DAMOP14 Meeting of The American Physical Society

The Bichromatic Force for Laser Cooling Without Spontaneous **Emission**¹ CHRISTOPHER CORDER, BRIAN ARNOLD, HAROLD METCALF, Physics Department, Stony Brook University, Stony Brook NY 11794-3800 — The bichromatic force (F_b) can produce laser cooling without relying on spontaneous emission (SpE).² It is implemented with two laser frequencies $\omega_{\ell} = \omega_a \pm \delta$ where ω_a is the atomic transition frequency and δ is a detuning, $\delta \gg \gamma = 1/\tau$ where τ is the excited atomic state lifetime. This produces multiple absorption-stimulated emission cycles to cause many momentum exchanges on a timescale faster than τ . The resulting magnitude of $F_b = 2\hbar k\delta/\pi$ is much larger than the radiative optical force $(\hbar k \gamma/2)$ and spans a much larger velocity range $(\Delta v_b = \delta/2k)$. Previous measurements have demonstrated F_b over time scales that included many SpE events.³ We have made measurements with a F_b cooling time $(M\Delta v_b/F_b)$ that is on the order of τ , thus having zero or at most one SpE during the experimental interaction time. Our intensity dependent studies show the atomic velocities changing over a range of many atomic recoils and accumulating at the edge of the F_b velocity profile, and we have developed numerical simulations that corroborate these results.

¹Supported by ONR
²H. Metcalf, Phys. Rev. A 77, 061401 (2008).
³M. Partlow et al., Phys. Rev. Lett. 93, 213004 (2004).

Harold Physics Department, Stony Brook University, Stony Brook NY 11794-3800

Date submitted: 31 Jan 2014

Electronic form version 1.4