Calculating the Non–Adiabatic Pathways in STIRAP1 YUAN SUN, HAROLD METCALF, Physics, Stony Brook University, Stony Brook NY 11794-3800 — The various origins of the non–adiabaticity of the Stimulated Raman Adiabatic Passage (STIRAP) process is a long-standing, well-studied, and interesting topic.2 We have analyzed the details of STIRAP’s non-adiabatic passage with a perturbative method that shares some of its characteristics with Feynman’s path integral approach. The key contribution to the atomic evolution is from the pulse envelopes, timing, and shapes, a time dependence that remains after the rotating frame transformation that is usually employed to produce a time-independent Hamiltonian. Our resulting propagator describes the time evolution of the quantum system, and the different perturbation orders allow for a better and more intuitive view of STIRAP’s non-adiabatic behavior. The method can be extended to other problems where the higher orders of the actual paths matter during the time evolution.

1Supported by ONR
2K. Bergmann et al., Rev. Mod. Phys. 70 1003 (1998)