Determination of the neon double core hole lifetime using high-intensity x-rays from the LCLS1 B. KRÄSSIG, E.P. KANTER, G. DOUMY, A.M. MARCH, S.H. SOUTHWORTH, L. YOUNG, Argonne National Laboratory, J.D. BOZEK, C. BOSTEDT, M. MESSERSCHMIDT, SLAC National Accelerator Laboratory — The concentration of x-ray photons in a focussed radiation pulse at the SLAC Linac Coherent Light Source (LCLS) exposes atoms to multiple sequential photoabsorption processes [1]. For ∼keV x rays the absorption in neon targets primarily the 1s shell and hollow neon atoms are readily created when the rate of photoabsorption exceeds that of inner-shell decay. With typical LCLS parameters and a ∼1 micron focus, we observed double core-hole states in neon for up to ∼20% of 1s ionization events. For comparison, electron-electron correlations lead to double-to-single core-hole ratios of just 0.3% under single photon absorption conditions [2].

Using the high-resolution electron time-of-flight spectrometers of the LCLS AMO Physics end station, we measured the Ne KK-KLL Auger hypersatellite spectrum and determined the lifetime of the Ne$^{2+}(1s^{-2})$ doubly core-excited state. The results are compared to theoretical predictions.

1Supported by the Chemical Sciences, Geosciences, and Biosciences Division, Office of Basic Energy Sciences, Office of Science, US Dept. of Energy, Contract DE-AC02-06CH11357.

Bertold Kraessig
Argonne National Laboratory

Date submitted: 31 Jan 2014

Electronic form version 1.4