Abstract Submitted for the DAMOP14 Meeting of The American Physical Society

Room Temperature Memory for Few Photon Polarization Qubits CONNOR KUPCHAK, THOMAS MITTIGA, BERTUS JORDAN, MEHDI NAZAMI, CHRISTIAN NOLLEKE, EDEN FIGUEROA, Stony Brook University — We have developed a room temperature quantum memory device based on Electromagnetically Induced Transparency capable of reliably storing and retrieving polarization qubits on the few photon level. Our system is realized in a vapor of 87 Rb atoms utilizing a Λ -type energy level scheme. We create a dual-rail storage scheme mediated by an intense control field to allow storage and retrieval of any arbitrary polarization state. Upon retrieval, we employ a filtering system to sufficiently remove the strong pump field, and subject retrieved light states to polarization tomography. To date, our system has produced signal-to-noise ratios near unity with a memory fidelity of >80% using coherent state qubits containing four photons on average. Our results thus demonstrate the feasibility of room temperature systems for the storage of single-photon-level photonic qubits. Such room temperature systems will be attractive for future long distance quantum communication schemes.

> Eden Figueroa Stony Brook University

Date submitted: 31 Jan 2014

Electronic form version 1.4