Electron Impact Excitation Collision Strengths for Fine-Structure Transitions in of Fe IX

SWARAJ TAYAL, Clark Atlanta University, OLEG ZATSARINNY, Drake University — New extensive calculations are performed for electron collision strengths and transitions probabilities for a wide range of transitions in Fe IX. The collision strengths are calculated in the close-coupling approximation using the B-spline Breit-Pauli R-matrix method. The multiconfiguration Hartree-Fock method in conjunction with B-spline expansions is employed for an accurate representation of the target wave-functions. The close-coupling expansion includes 370 fine-structure levels of Fe IX in energy region up to $3p^55s$ states. It includes levels of the $3p^6$, $3p^53d$, $4l$, $5s$, $3s3p^63d$, $4s$, $4p$, $3p^43d^2$, $3s3p^53d^2$ configurations and some low-lying levels of the $3p^53d^3$ configuration. The effective collision strengths are obtained by averaging the electron collision strengths over a Maxwellian distribution of velocities at electron temperatures in the range from 10^4 to 10^7 K. There is a good agreement with the previous R-matrix calculation for transitions between first 17 levels of the $3p^6$, $3p^53d$ and $3s3p^63d$ configurations. The present results considerably expand the existing data sets for Fe IX, allowing more detailed treatment of the available measured spectra from different space observatories.

1This research is supported by NASA under grant NNXX11AB62G from the Solar and Heliospheric Physics Program and NSF under grant PHY0244470

Swaraj Tayal
Clark Atlanta University

Date submitted: 31 Jan 2014

Electronic form version 1.4