Stochastic nature induced by laser noise in narrow transitions

YUAN SUN, The Hong Kong university of science and technology, CHEN ZHANG, JILA, University of Colorado at Boulder, Physics department, Purdue University —

We use a probability-theory approach to study the laser noise’s effects on laser-atom interactions. We consider the case where the atom is described by a two-level system without spontaneous emission and the laser has both intensity and frequency noises. A stochastic differential equation is established based on the Schrödinger equation of the laser-atom interaction in the semiclassical picture. We then analyze the equation using the path-integral technique to the first order of a perturbation approach. Because of the presence of laser noises, the atom wave function at a given time is a random variable. Therefore we construct a stochastic process charactering its time evolution. We also provide the theoretical description for the experimental realization of measuring the laser line width by driving a narrow atomic transition, and establish the connection between the laser noise’s roles in the laser-atom interaction and laser line width measurement by beat signal.

\(^1\)NSF, AFOSR-MURI