Abstract Submitted for the DAMOP14 Meeting of The American Physical Society

A new simple exotic atom, H^{-+} : e^+ bound to H^- in an atomic state¹ I. GUEVARA, M. WEEL, M.C. GEORGE, E.A. HESSELS, C.H. STORRY², York Univ — A beam of H^- ions is directed along the axis of a solenoidal magnet winding. Within this magnet, cylindrical electrodes with applied potentials slow the ions to an energy of $\sim 50 \text{ eV}$ in a magnetic field of ~ 0.13 Tesla. This apparatus also acts as a charged particle trap. e^+ from a radioactive source are slowed in frozen neon, guided by magnetic fields and captured in this Surko-style accumulator with $\sim 10^7 e^+$ trapped and cooled for experiments. H^- ions are directed through these e+ producing long-lived H^{-+} atoms. H^{-+} is not bound in the charged particle trap and continues with the initial momentum of the H^- ion into a metal plate. Upon impact the e^+ quickly annihilates into back-to-back gammas. Detection of these coincident gammas indicates H^{-+} that traveled the 2 meter to the detector and indicates a survival time of $\sim 5\mu s$. Typically systems with antimatter bound to matter particles have short lifetimes (and hence wide transition widths) due annihilation. Rydberg states of H^{-+} , however, have the long radiative lifetimes of normal matter atoms because there is little overlap of the e^+ wavefunction with the core. The detected rates or H^{-+} are consistent with those expected for radiative recombination.

¹NSERC, CFI, ORF ²Corresponding Author

> Cody Storry York Univ

Date submitted: 31 Jan 2014

Electronic form version 1.4