Noble Gas Polarimetry Using Rb EPR Frequency Shifts

Z.L. MA, K. JEONG, E. HOUGHTBY, T. PASKVAN, M.E. LIMES, B. SAAM, University of Utah — EPR frequency shifts of optically polarized alkali-metal atoms can be exploited for polarimetry of noble-gas nuclei polarized by spin-exchange optical pumping. Our group recently measured the enhancement factor $\kappa_0 = 493$ for Rb-129Xe [1], which characterizes the electron wave-function overlap during collisions and is crucial to the calibration of the frequency-shift for 129Xe polarimetry. This type of polarimetry is useful in several applications involving optically polarized 129Xe; our particular motivation is an in situ measurement of absolute 129Xe polarization within the optical pumping cell of a flow-through 129Xe polarizer [2]. This application has some particular challenges, and we have initially observed some unexpected shifts in the 87Rb EPR frequency measurement on board the polarizer. In effort to disentangle these apparent systematic effects, we have constructed a separate experiment to characterize Rb EPR shifts for both 3He and 129Xe in sealed cells. We present results and analysis of these experiments and discuss implications for using this method in flow-through polarizers.

1NSF PHY-0855482

B. Saam
University of Utah

Date submitted: 31 Jan 2014

Electronic form version 1.4