Abstract Submitted
for the DAMOP14 Meeting of
The American Physical Society

Exploration of the Dissociative Recombination following DNA ionization to DNA\(^+\) due to ionizing radiation\(^1\) RICHARD A. STROM, ANDREW T. ZIMMERLY, VOLA M. ANDRIANARIJAONA, Department of Physics, Pacific Union College, Angwin, California 94508, USA — It is known that ionizing radiation generates low-energy secondary electrons, which may interact with the surrounding area, including biomolecules, such as triggering DNA single strand and double strand breaks as demonstrated by Sanche and coworkers (*Radiat. Res.* **157**, 227(2002)). The bio-effects of low-energy electrons are currently a topic of high interest. Most of the studies are dedicated to dissociative electron attachments; however, the area is still mostly unexplored and still not well understood. We are computationally investigating the effect of ionizing radiation on DNA, such as its ionization to DNA\(^+\). More specifically, we are exploring the possibility of the dissociative recombination of the temporary DNA\(^+\) with one of the low-energy secondary electrons, produced by the ionizing radiation, to be another process of DNA strand breaks. Our preliminary results, which are performed with the binaries of ORCA, will be presented.

\(^1\)Authors wish to give special thanks to Pacific Union College Student Senate in Angwin, California, for their financial support.

Vola M Andrianarijaona
Department of Physics, Pacific Union College,
Angwin, California 94508, USA

Date submitted: 31 Jan 2014

Electronic form version 1.4