Measurements of cold lithium atoms in a magneto-optical trap

DAN MOHR, JAY BROOKS, Bethel University, DAN KLEMME, University of Minnesota, CALEB LOGEMANN, CHAD HOYT, Bethel University — We present measurements of cold ^7Li atoms in a magneto-optical trap based on an amplified external cavity diode laser at 671 nm. The temperature of the atoms is measured to be $550 \pm 70 \, \mu\text{K}$ using a time-lapsed absorption imaging and cloud radius measurement technique. This temperature is confirmed using the release-and-recapture method with a trap diameter of $d = 1.9 \, \text{cm}$. We recorded the frequency spectrum of the cold atoms at approximately $1.5 \, \text{mK}$ on the D2 unresolved lines ($2S_{1/2} F = 2 \rightarrow 2P_{3/2} F'$) in ^7Li using fluorescence imaging. The spectroscopic line width of the $F = 2 \rightarrow F' = 3$ transition is approximately $11 \, \text{MHz}$ full-width at half-maximum, consistent with temperature measurements and a Voigt spectral line shape with natural line width $\gamma/2\pi = 5.87 \, \text{MHz}$. We observed line shape effects due to probe laser beam polarization in the presence of an equal irradiance re-pumping beam on the $F = 1 \rightarrow F'$ transition, which included a peak shift of approximately $1 \, \text{MHz}$.

1Supported by NSF #1245573, CID, Inc., Bethel University.