Progress towards a rapidly rotating ultracold Fermi gas1 MING-GUANG HU, RUTH BLOOM, DEBORAH JIN, ERIC CORNELL, JILA, NIST and University of Colorado and Department of Physics, University of Colorado — We are designing an experiment with the goal of creating a rapidly rotating ultracold Fermi gas, which is a promising system in which to study quantum Hall physics. We propose to use selective evaporation of a gas that has been initialized with a modest rotation rate to increase the angular momentum per particle in order to reach rapid rotation. We have performed simulations of this evaporation process for a model optical trap potential. Achieving rapid rotation will require a very smooth, very harmonic, and dynamically variable optical trap. We plan to use a setup consisting of two acousto-optical modulators to “paint” an optical dipole trapping potential that can be made smooth, radially symmetric, and harmonic.

1This work is supported by the National Science Foundation under Grant No. 1125844 and by the National Institute of Standards and Technology