A Detailed Dissociation Dynamics Following Valence Photo-Double Ionization (PDI) of O₂ and N₂

A. GATTON, Auburn University, I. BOCHAROVA, B. Gaire, Lawrence Berkeley National Laboratory, A.L. LANDERS, Auburn University, TH. WEBER, A. BELKACEM, Lawrence Berkeley National Laboratory, T. JAHNKE, R. DÖRNER, Institute für Kernphysik, University of Frankfurt, AMOS COLLABORATION — We compare the dissociation dynamics in the valence Photo-Double Ionization (PDI) of O₂ and N₂. COLd Target Recoil Ion Momentum Spectroscopy (COLTRIMS) was used to gather a kinematically complete coincidence measurement of both photoelectrons and recoil ions. PDI can occur by either direct simultaneous emission of both photoelectrons or indirectly by the ejection of a single photoelectron which leaves behind an excited cation that then undergoes autoionization. While we observe both processes in each molecule, O₂ favors the indirect and N₂ the direct path. We identify the electronic states involved with kinetic energy maps of recoil ions and electrons and with Molecular Frame Photoelectron Angular Distributions (MFPADs). We display the photoelectron relative angles to show which double ionization mechanisms are responsible for the PDI.

Averell Gatton
Auburn University

Date submitted: 20 Feb 2014