DAMOP15-2014-000003

Abstract for an Invited Paper for the DAMOP15 Meeting of the American Physical Society

Topological flat bands by dipolar exchange interactions HANS PETER BÜCHLER, University of Stuttgart

We demonstrate the realization of topological band structures by exploiting the intrinsic spin-orbit coupling of dipolar interactions in combination with broken time-reversal symmetry. The system is based on polar molecules trapped in a deep optical lattice, where the dynamics of rotational excitations follows a hopping Hamiltonian which is determined by the dipolar exchange interactions. We find topological bands with Chern number C = 2 on the square lattice, while a very rich structure of different topological bands appears on the honeycomb lattice. We show that the system is robust against missing molecules. For certain parameters we obtain flat bands, providing a promising candidate for the realization of bosonic fractional Chern insulators.