Abstract Submitted for the DAMOP15 Meeting of The American Physical Society

Study of Metastable N_2 Production Using an N_2 Matrix Detector¹ WILLIAM MCCONKEY, WLADEK KEDZIERSKI, CYRUS CERKAUSKAS, University of Windsor — Metastable N_2 molecules produced in the interaction of electrons of carefully controlled energy with a thermal beam of N_2 in a crossed beam set-up have been studied in the energy range from threshold to 400 eV. The e-beam is pulsed and the metastables produced drift to a solid nitrogen target held at 10 K. Here they form excimers which immediately radiate. The resultant photons are detected using a photomultiplier-filter combination. Time-of-flight techniques are used to separate these photons from prompt photons produced in the initial electron- N_2 collision. The excimer emission is strongest in the green but still significant in the red spectral region. Excitation functions will be presented together with threshold measurements. These help to identify the metastable states being observed and the excitation mechanisms which are responsible.

¹The authors thank NSERC and CFI, (Canada), for financial support.

William McConkey University of Windsor

Date submitted: 14 Jan 2015 Electronic form version 1.4